Investigation of J_c Properties in Bi₂Sr₂Ca_{n-1}Cu_nO_y Superconducting Whisker using SR-XPS and HRTEM

<u>Hiromi Tanaka</u>^{1,2}, Tatsuya Ishigaki³, Soh Adachi³, Satoru Kishida³, Hideki Yoshikawa¹, Masahiro Kimura¹, Yoshio Matsui¹ and Keisuke Kobayashi¹

¹Department of Materials Infrastructure, National Institute for Materials Science, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-5198, Japan ²Research Fellow of the Japan Society for the Promotion of Science ³Tottori University, 4-101, Koyama-Minami, Tottori 680-8552, Japan

We grew Bi-based superconducting whiskers with various substitution ratio of Ca for Sr sites by ASGQP (an Al₂O₃-seeded glassy quenched platelet) method. Therefore, we found that only Bi-based superconducting whiskers whose Sr sites of 30% were occupied by Ca showed a high superconductive critical current density(:J_c) in the order of 2×10^5 A/cm².

Moreover, we clarified chemical bond nature of as-grown Bi-based superconducting whiskers by high-energy X-ray photoemission spectroscopy using synchrotron radiation (SR-XPS). Therefore, we confirmed that Ca actually occupied Sr sites by existence of another XPS peak at higher binding energy of each Ca- $2p_{3/2,1/2}$ XPS spectrum (See Fig.2).

In addition, we also observed local structures of Bi-based superconducting whiskers by high-resolution transmission electron microscopy(HRTEM) in order to clarify an origin of the J_c enhancement. Therefore, we found that strains which were come from a smaller ion radius of Ca compared with one of Sr ion affected a lattice mismatch between CuO₂ plane and SrO plane in Bi-based superconductor and they forced to change modulation lengths in some unit cells. These strains seem to have worked as effective pinning centers in Bi-based superconducting whiskers.

Fig.1 Optical photograph and SEM image of the grown whiskers.

Fig.2 Ca-2p XPS spectrum obtained from the surface of the as-grown whiskers and the Bi-2212 single crystal cleaved in high vacuum $(3.5 \times 10^{-6} Pa)$ [hv=4750eV].