Hard X-Ray Photoemission Study of Manganite Buried Layers

<u>Koji Horiba</u>¹, Munetaka Taguchi¹, Ashish Chainani¹, Masaharu Matsunami¹, Yasutaka Takata¹, Makina Yabashi^{2, 3}, Kenji Tamasaku², Yoshinori Nishino², Daigo Miwa², Tetsuya Ishikawa^{2, 3}, Akira Chikamatsu⁴, Hiroshi Kumigashira⁴, Masaharu Oshima⁴, and Shik Shin^{1,5}

 ¹Soft X-Ray Spectroscopy Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
²Coherent X-Ray Optics Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
³JASRI/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
⁴Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
⁵Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

Although photoemission spectroscopy plays a central role in studying the density of states (DOS) of solids, the reliability of photoemission spectra for addressing the intrinsic electronic structure of strongly correlated electron system (SCES) has been sometimes questioned due to its surface sensitivity. The recent progress in hard x-ray photoemission spectroscopy (HX-PES) enables us to address the intrinsic electronic SCES, even deeply buried interfaces. Recently, we reported the intrinsic electronic structure of typical SCES compound La_{1-x}Sr_xMnO₃ (LSMO) thin films using HX-PES technique [1]. HX-PES spectra exhibit a clear additional bulk-derived peak at the low binding-energy side of Mn $2p_{3/2}$ peak. This peak is strongly related to the metallic and/or ferromagnetic physical properties of LSMO thin films and a cluster model calculation including charge transfer from doping induced DOS at Fermi level to Mn 3*d* states reproduces this bulk-derived peak observed in Mn 2p core-levels. In this work, we have investigated the electronic structure of LSMO layers buried below SrTiO₃ (STO) overlayers. In the thin LSMO layers, the low binding-energy feature in Mn 2p core-levels is considerably reduced. This is direct evidence that the metallicity of LSMO is suppressed at the LSMO/STO interface.

[1] K. Horiba et al., Phys. Rev. Lett. 93, 236401 (2004).