Electronic Structure of the Heusler-type Compound Ru_{0.5}Fe_{1.5}CrSi Studied by Hard X-Ray Photoelectron Spectroscopy A. Kimura¹, K. Sakamoto¹, K. Miyamoto¹, Y. Cui¹, M. Taniguchi¹, M. Nakatake², K. Shimada², S. Qiao², H. Namatame², S. Fujimori³, Y. Takeda³, Y. Saitoh³, K. Kobayashi⁴, K. Matsuda⁵, M. Hiroi⁵, M. Kawakami⁵, S. Mizutani⁵ and S. Ishida⁵ ¹Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan ²Hiroshima Synchrotron Radiation Center, Higashi-Hiroshima 739-0046, Japan ³JAEA/SPring-8, Sayo, Hyogo 679-5198, Japan ⁴NIMS/SPring-8, Sayo, Hyogo 679-5198, Japan ⁵Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan Heusler-type ternary compounds have attracted much attention owing to their predicted half-metallic electronic structures. This class of compound is regarded as a key material for a promising application to next generation spintronics devices. However, the magneto-resistance ratio of magnetic tunneling junctions with these compounds show much smaller values than expected, which might be partly due to an anti-site defect. Recently, Ru_{2-x}Fe_xCrSi has been predicted to hold a high spin polarization even if the anti-site defect would exist [1]. Motivated by this prediction, the samples with several Fe compositions have been fabricated and turned out to show ferromagnetism with rather high Curie temperature [2]. Here we present a research on the experimental evaluation of electronic structure probed by photoelectron spectroscopy. The valence band photoemission spectra have been taken with the brilliant synchrotron radiation in the hard X-ray region (3500-8000eV). We find the best agreement between the experimental and theoretical DOS if the Fe-Cr anti-site defect is considered, with keeping the higher spin polarization above 80% at E_F as shown in Fig.1. We have thus confirmed that Ru_{0.5}Fe_{1.5}CrSi can be one of the most promising materials with high spin polarization. - [1] S. Mizutani et al., Mater. Trans. 47 (2006) 25. - [2] K. Matsuda et al., J. Phys.: Condens. Matter 17 (2005) 5889. Fig.1.