Hard X-ray Photoelectron Spectroscopy of CrO₂ G. Funabashi, A. Sekiyama, S. Imada, H. Fujiwara, T. Saita, T. Miyamachi, A. Yamasaki, J. Yamaguchi, M. Tsunekawa, K. Okada^A, M. Sperlich^B, G. Guentherodt^B, A. Higashiya^C, M. Yabashi^D, K. Tamasaku^C, D. Miwa^C, T. Ishikawa^{C,D} and S. Suga Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan 3-1-1 Tsushima-naka, Okayama 700-8530, Japan ^CSPring-8/Riken 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-8148, Japan CrO_2 is a half-metallic ferromagnetic material. Until now, various experiments have been performed. Since the surface of CrO_2 is easily covered by Cr_2O_3 because of the chemical instability of CrO_2 , it has been difficult to observe the bulk electronic states of pure CrO_2 by means of photoelectron spectroscopy. In order to suppress the influence of the surface, we performed the hard x-ray photoelectron spectroscopy (HAXPES) on CrO_2 thin film at SPring-8 BL19LXU. The CrO_2 thin film was transferred into the sample-airlock system through N_2 gas. HAXPES was measured in ultrahigh vacuum without any surface processing. In the previous report [1], the so-called "well-screened" peak was clearly observed on the low binding energy side of the transition metal 2p core HAXPES spectrum in metallic phases. Such a peak is confirmed to be a bulk-specific component. In the present experiment, the "well-screened" peak is very clearly observed in the Cr 2p HAXPES spectrum. Other core HAXPES spectra are also discussed. ## Reference: [1] K. Horiba et al., Phys. Rev. Lett. 93, 236401 (2004) ^AGraduate School of Natural Science and Technology, Okayama University, ^BII.Physikalisches Institut, RWTH Aachen, Physikzentrum Melaten, Huyskenweg, 52074 Aachen, Germany ^DSPring-8/JASRI 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-5198, Japan