Hard X-ray Photoemission Spectra of Yb_{0.88}Lu_{0.12}B₁₂

Junichi Yamaguchi¹, Akira Sekiyama¹, Shin Imada¹, Hidenori Fujiwara¹, Toshio Miyamachi¹, Masao Yano¹, Hirosato Higashimichi¹, Gen Funabashi¹, Fumitoshi Iga², Toshiro Takabatake², Atsushi Higashiya³, Daigo Miwa³, Kenji Tamasaku³, Makina Yabashi⁴, Tetsuya Ishikawa^{3,4}, and Shigemasa Suga¹

 ¹Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
²Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
³RIKEN/SPring-8, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-8148, Japan
⁴JASRI/SPring-8, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-5198, Japan

ABSTRUCT

Temperature-dependence of the Yb 3*d* and valence band photoemission spectra of a Lu substituted Kondo semiconductor $Yb_{0.88}Lu_{0.12}B_{12}$ was measured by means of hard X-ray photoemission spectroscopy (HAXPES) at hv ~ 8 keV. HAXPES enables one to study the intrinsic bulk Yb 4*f* states and the Yb valence, because the photoelectrons have longer inelastic mean free paths (IMFPs) than previous low-hv PES studies.

In the valence band, the whole peaks of the Yb³⁺ $4f^{12}$ multiplets was found to shift by ~30 meV toward higher binding energies with decreasing the temperature from 200 to 20 K. On the other hand, the peak energy position of the Yb²⁺ $4f^{13}$ spectra was almost temperature independent. The temperature-dependence of the Yb 4*f* photoemission spectra is discussed in comparison with the non-crossing approximation (NCA) calculation based on the single impurity Anderson model (SIAM).