Electronic structure of $3d^1$ configuration vanadium oxides studied by hard x-ray photoemission spectroscopy

<u>Ritsuko Eguchi</u>¹, Munetaka Taguchi¹, Masaharu Matsunami¹, Koji Horiba¹, Kazuya Yamamoto¹, Yukiaki Ishida¹, Ashish Chainani¹, Yasutaka Takata¹, Makina Yabashi^{2, 3}, Daigo Miwa², Yoshinori Nishino², Kenji Tamasaku², Tetsuya Ishikawa^{2, 3}, Yasunori Senba³, Haruhiko Ohashi³, Isao Inoue⁴, Yuji Muraoka⁵, Zenji Hiroi⁵, and Shik Shin^{1, 5}

 ¹Soft X-ray Spectroscopy Laboratory, RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
²Coherent X-ray Optics Laboratory, RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
³JASRI/SPring-8, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
⁴Correlated Electron Research Center, National Institute of Advance Industrial Science and Technology, Tsukuba Central 4, Tsukuba 305-8562, Japan
⁵Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

We investigate the electronic structure of the $3d^1$ configuration vanadium oxides VO₂, SrVO₃ and CaVO₃ using hard x-ray (7937 eV) photoemission spectroscopy (HX-PES) at undulator beam lne BL29XUL in SPring-8.

VO₂/TiO₂:Nb thin films exhibit a metal-insulator transition (MIT) as a function of temperature at $T_{MI} = 295$ K. The HX-PES valence band spectra clearly show the opening of a gap at $E_{\rm F}$ accompanying the MIT. Spectral changes in the V 2p and V 1s core levels were also observed as a function of temperature. In addition, $3d^1$ configuration metals SrVO₃ and CaVO₃ are typical materials whose valence band spectra are compared with the dynamical mean-field theory. The *d*-bandwidth can be controlled easily by the V-O-V bond angle, i.e., the *d*-bandwidth W of SrVO₃ is larger than that of CaVO₃. The V 2p and 1s core level HX-PES of SrVO₃ and CaVO₃ show clear additional well-screened features. These features originate from bulk screening by coherent band at $E_{\rm F}$ as observed in other 3d transition metal oxides. Comparison between SrVO₃ and CaVO₃ in HX-PES shows a small increase of the intensity of these well-screened features in SrVO₃. The spectra are nicely reproduced by a cluster model calculation, indicating a difference of the parameter V^* for the interaction strength between the central V 3d orbitals and the coherent band.