Interface Structure of Tunnel Oxynitride for Flash Memory
Studied by Hard X-ray Photoelectron Spectroscopy

Ziyuan Liu1, Takashi Ide1, Nubuyoshi Sasaki1, Yorinobu Kunimune1, Mariko Makabe1, Masahiro Kimura2, Vlaicu A. Miha3 and Hideki Yoshikawa3

1NEC Electronics Corporation, 1753, Nakahara, KAWASAKI 211-8668, Japan
2SPring-8 Service Co. Ltd, 3Harima Office, National Institute for Materials Science, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan

Silicon Oxynitride (SiON) have drawn great attention as candidate dielectric due to the benefit of small charge-trapping amount\cite{1}, which is known to be limiting factor of program/erase cycling endurance of floating-gate type FLASH memory. The effect of nitrogen incorporation, however, shows process-condition dependence rather than nitrogen-amount dependence. Chemical state of nitrogen atoms in SiON film is likely playing critical role in the dielectric characteristics.

In this study, chemical depth profile of nitrogen atoms, in two kinds of 7nm SiON films with significant difference in charge trapping behavior, was studied by angle-resolved photoelectron spectroscopy (AR-PES), at BL15XU in SPring-8. The excitation energy was chosen as 3keV±0.3eV based on the balance of the detectable depth and photoionization cross section.

Fig.1 shows N1s spectra consisted of N1-N4 components. The results implied a significant difference that N1 was detectable only in NO-annealed film. Angle dependence of N1-N4 indicated that N1 exist in and N2 exist closer to the interface, N3 and N4 are distributing within the SiON films. Referring to recent reports\cite{2}, we assigned N1 to Si$_3$N$_4$ in SiO$_2$/Si interface, and N2 to [N-Si$_3$] within the near interface region. With AR-PES, we found that the interface structure of NO-annealed film is a mixture of SiO$_2$ and Si$_3$N$_4$ cluster, while that of N$_2$O-annealed film is the same as the SiO$_2$ film. Since NO-annealed film contains a significantly higher number of electrically active electron traps existing mainly in the interface than the N$_2$O-annled film, we thus demonstrate that the interfacial electron trap generation relate to Si$_3$N$_4$ cluster at the interface.

![Fig.1 N1s photoelectron spectra obtained from SiON films in the normal emission.](image-url)